Use of high specific activity StarFire oligonucleotide probes to visualize low-abundance pre-mRNA splicing intermediates in S. pombe.
نویسندگان
چکیده
An oligonucleotide labeling system was developed that can produce radiolabeled hybridization probes with tenfold or more higher specific activity than is obtained by traditional 5'-end-labeling with polynucleotide kinase. Yet the system is as rapid and simple as kinase labeling. The reaction uses the Klenow fragment of E. coli DNA polymerase to add alpha-32P-dA residues to the 3'-end of an oligonucleotide in a primer-extension reaction. Unlike other methods of radioactive tailing (e.g., terminal transferase), a single species is produced of both known length and known specific activity. The reaction is efficient, and over 90% of probe molecules are routinely labeled. Using this method of labeling, an oligonucleotide was shown to be tenfold more sensitive in detecting target DNA sequences in a dot blot hybridization assay, compared to the same oligonucleotide labeled using polynucleotide kinase. Northern blots of Schizosaccharomyces pombe RNA were probed with an oligonucleotide specific for intron 1 of the tf2d gene, a TATA-box binding transcription factor. Kinase-labeled tf2d probe detected only unspliced RNA, while the same oligonucleotide labeled using the new method detected both unspliced tf2d RNA and rare pre-mRNA splicing intermediates.
منابع مشابه
Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae C...
متن کاملRestoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملA rapid high-throughput method for mapping ribonucleoproteins (RNPs) on human pre-mRNA.
Sequencing RNAs that co-immunoprecipitate (co-IP) with RNA binding proteins has increased our understanding of splicing by demonstrating that binding location often influences function of a splicing factor. However, as with any sampling strategy the chance of identifying an RNA bound to a splicing factor is proportional to its cellular abundance. We have developed a novel in vitro approach for ...
متن کاملStructural characterization of the fission yeast U5.U2/U6 spliceosome complex.
The spliceosome is a dynamic macromolecular machine that catalyzes the excision of introns from pre-mRNA. The megadalton-sized spliceosome is composed of four small nuclear RNPs and additional pre-mRNA splicing factors. The formation of an active spliceosome involves a series of regulated steps that requires the assembly and disassembly of large multiprotein/RNA complexes. The dynamic nature of...
متن کاملA novel RING-finger-like protein Ini1 is essential for cell cycle progression in fission yeast.
We have cloned a fission yeast (Schizosaccharomyces pombe) homologue of Ini, a novel RING-finger-like protein recently identified in rat that interacts with the connexin43 (cx43) promoter and might be important for the response of the cx43 gene to estrogen. S. pombe cells deleted for ini1(+) fail to form colonies and arrest with an elongated cell phenotype, indicating a cell cycle block. Cell c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2000